Central limit theorems for the non-parametric estimation of time-changed Le19 evy models

نویسنده

  • José E. Figueroa-López
چکیده

Let {Zt}t≥0 be a Lévy process with Lévy measure ν and let τ(t) := ∫ t 0 g(r̃(u))du be a random clock, where g is a non-negative function and {r̃(t)}t≥0 is an ergodic diffusion independent of Z. Time-changed Lévy models of the form Xt := Zτt are known to be good models to capture several stylized features of asset prices such as leptokurtic distributions and volatility clustering. In our previous work [19], we proposed consistent estimators for the integral parameter β(φ) := ∫ φ(x)ν(dx) based on highfrequency discrete observations of the process X. In this paper, we prove central limit theorems for our estimators, valid when both the sampling frequency and time-horizon get larger. Our results combine the long-run ergodic properties of the diffusion r̃ with the short-term ergodic properties of the Lévy process Z via central limit theorems for martingale differences. The performance of the estimators are illustrated numerically for Normal Inverse Gaussian process Z and a CIR process r̃. We found that the bias of the estimators is affected mainly by the sampling frequency, while the standard error is affected mainly by the time-horizon T . AMS 2000 subject classifications: 60J75; 60F05; 62M05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform limit theorems for the integrated periodogram of weakly dependent time series and their applications to Whittle's estimate

We prove uniform convergence results for the integrated periodogram of a weakly dependent time series, namely a law of large numbers and a central limit theorem. These results are applied to Whittle’s parametric estimation. Under general weak-dependence assumptions we derive uniform limit theorems and asymptotic normality of Whittle’s estimate for a large class of models. For instance the causa...

متن کامل

Sieve-based confidence intervals and bands for Le19 evy densities

A Lévy process combines a Brownian motion and a pure-jump homogeneous process, such as a compound Poisson process. The estimation of the Lévy density, the infinite-dimensional parameter controlling the jump dynamics of the process, is considered here under a discrete-sampling scheme. In that case, the jumps are latent variables which statistical properties can be assessed when the frequency and...

متن کامل

Central limit theorems for the nonparametric estimation of time-changed Lévy models

Let {Zt}t≥0 be a Lévy process with Lévy measure ν and let τ(t) := ∫ t 0 g(r̃(u))du be a random clock, where g is a non-negative function and {r̃(t)}t≥0 is an ergodic diffusion independent of Z. Time-changed Lévy models of the form Xt := Zτt are able to incorporate several important stylized features of asset prices, such as leptokurtic distributions and volatility clustering. In our former paper ...

متن کامل

Risk bounds for the non-parametric estimation of Le19 evy processes

Estimation methods for the Lévy density of a Lévy process are developed under mild qualitative assumptions. A classical model selection approach made up of two steps is studied. The first step consists in the selection of a good estimator, from an approximating (finite-dimensional) linear model S for the true Lévy density. The second is a data-driven selection of a linear model S, among a given...

متن کامل

DYNSTOCH 2013 University of Copenhagen April 17 - 19

s (Talks) 5 Adeline Samson. PARAMETER ESTIMATION IN THE STOCHASTIC MORRIS-LECAR NEURONAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Alexander Schnurr. AN ORDINAL PATTERN APPROACH TO DETECT AND TO MODEL DEPENDENCE STRUCTURES BETWEEN FINANCIAL TIME SERIES . . . . . . . . . . . . 7 Benedikt Funke. ADAPTIVE NADARAYA-WATSON LIKE ESTIMATORS FOR THE ESTIMATION ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010